If it's not what You are looking for type in the equation solver your own equation and let us solve it.
u^2=-19u
We move all terms to the left:
u^2-(-19u)=0
We get rid of parentheses
u^2+19u=0
a = 1; b = 19; c = 0;
Δ = b2-4ac
Δ = 192-4·1·0
Δ = 361
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{361}=19$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(19)-19}{2*1}=\frac{-38}{2} =-19 $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(19)+19}{2*1}=\frac{0}{2} =0 $
| -22(w+831)=990 | | (7x-61)=(2x+25) | | 9⁴x/3²x=2187 | | 8x+4=3(x-1+7) | | 10d+8=-6+9d | | 789×x=1245 | | 23n=18n+35n | | 8c+30=6c+50 | | -7b-5=-5b+1 | | -7b–5=-5b+1 | | 4n=2n+6n | | 4n=2n+6n=3 | | -8/39(x)=-11/3 | | 10=70+-0,1x+-0,001x2 | | 5x–2=3x+18= | | 5^2x=12.5 | | 5x–2=3x+18 | | 2(×+1)-3x=3(3+2x) | | 4*h=20 | | 10-x-4=32 | | 4(2)^x=64 | | 1/9f=3 | | 6y+4=10y-16 | | 3x+2=-x-4 | | −4x4+36x3−80x2=0 | | 6a+4+2a=20 | | 6x-7=-1+9 | | -25+1/3z=-17 | | -17=-25+1/3z | | 9y+4-2y=22 | | 4y+12+2y=54 | | 3b+6b=81 |